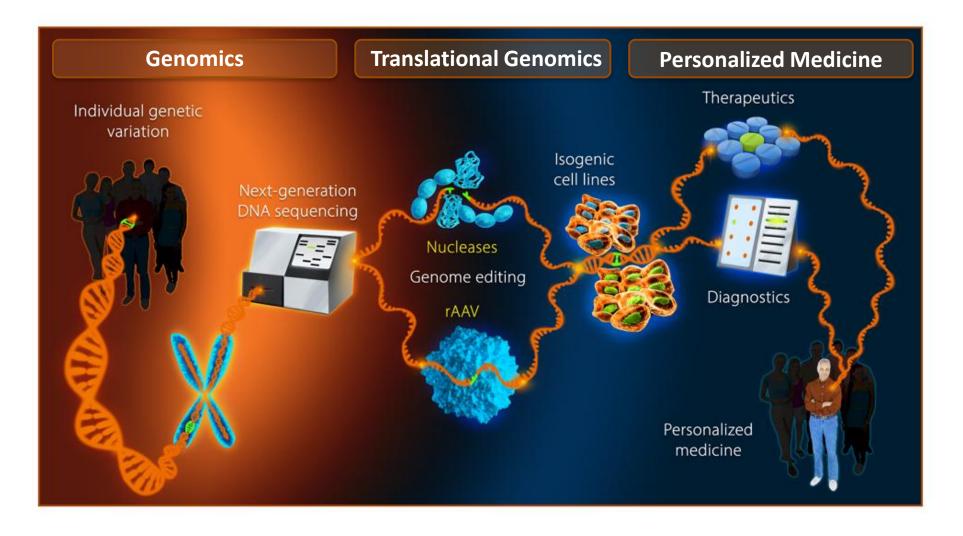


Translating Genomes | Personalizing Medicine

X-MAN™ reporter cell lines: Tools to study endogenous promoter activity and protein dynamics

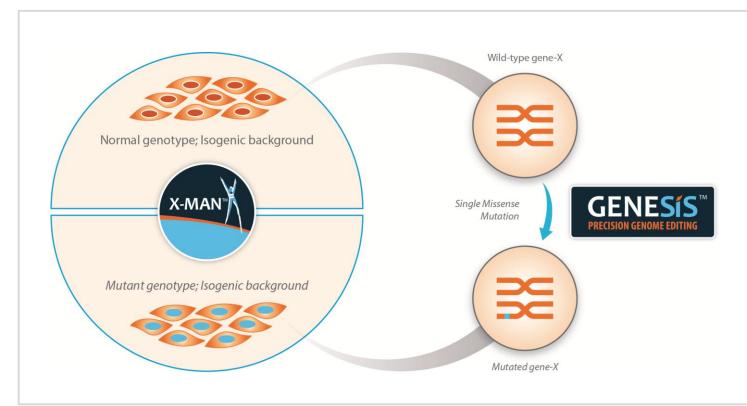
March 2014


Agenda

➤ Introduction to Horizon's Technology

➤ X-MAN™ HaloTag® Reporter Kits

➤ X-MAN™ NanoLuc™ Reporter Kits

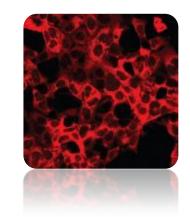

Entering the post-genomic era: Translating genetic information into personalised medicine

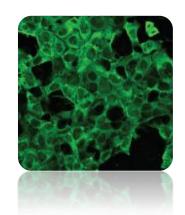
- > Genome sequencing is now routine and emphasis is shifting to the 'functional human genome'
- ➤ Horizon are experts in 'Genome Editing' in human/mammalian cells targeted gene KI/KOs
- ➤ An essential new tool to model patient genetics in vitro and discover novel targets, Tx's and Dx's

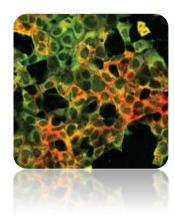
GENESIS™: Horizon's gene editing platform & X-MAN™ cell lines

- ➤ GENESIS™ platform consists of rAAV and nuclease-based gene editing technologies
- Generated over 500 genetically-defined X-MAN™ isogenic human cell lines
 - KOs to study gene function or target validation
 - Accurate KI-models of target patient genetics "surrogate patients" + perfect normal control
- > Endogenous pathway reporter lines

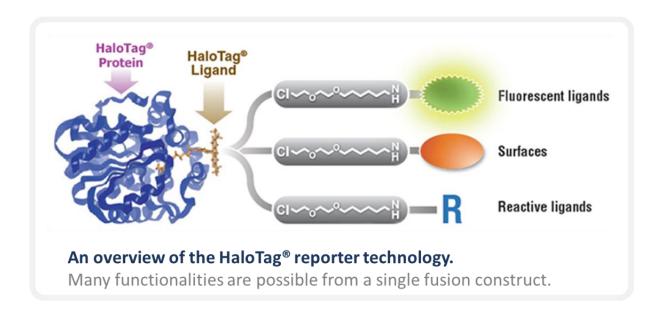
- ➤ **GENESIS™** Genome Editing: Make any mutation of interest
- Validate putative diseasecausing mutations and SNPs
- Definitively study target biology and drug responses
- Create pathway reporter lines
- Build complex diseases from ground up, or sequentially correct them


X-MAN[™] Reporter Kits: Live cell endogenous pathway reporters


- > rAAV genome editing used to engineer endogenous tags and reporters
- > Available in kit format from Horizon
 - X-MAN[™] NanoLuc[™] Reporter Kits
 - Knock-in of Luciferase reporter into endogenous locus for *in vitro & in vivo pathway* read-outs
 - X-MAN[™] HaloTag[®] Reporter Kits
 - Knock-in of reporters/tag into endogenous locus for in vitro imaging / pull-downs / purification


Kits contain cell lines and all reagents necessary to perform a set of experiments

Agenda

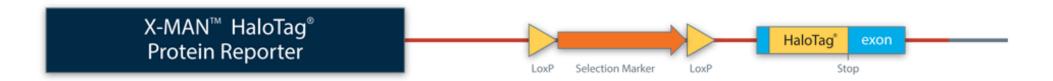

➤ Introduction to Horizon's Technology

➤ X-MAN™ HaloTag® Reporter Kits

➤ X-MAN™ NanoLuc™ Reporter Kits

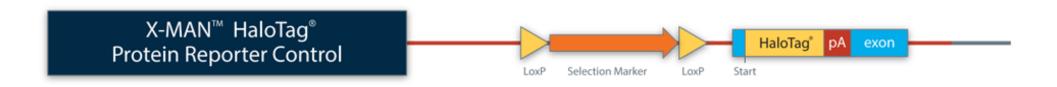
X-MAN™ HaloTag® Reporter Lines: Technology Background

- ➤ X-MAN™ HaloTag® reporter cell lines have been generated using Horizon Discovery's GENESIS™ gene editing platform
- This technology enables introduction of HaloTag® as N- or C-terminal fusions to genes encoding proteins of interest at their native genetic loci, occurring at physiologically relevant levels
- ➤ HaloTag® reporter technology has many applications
 - No limit to the experiments that can be performed, only by the genes that you would target
 - · Endogenous high-content screening

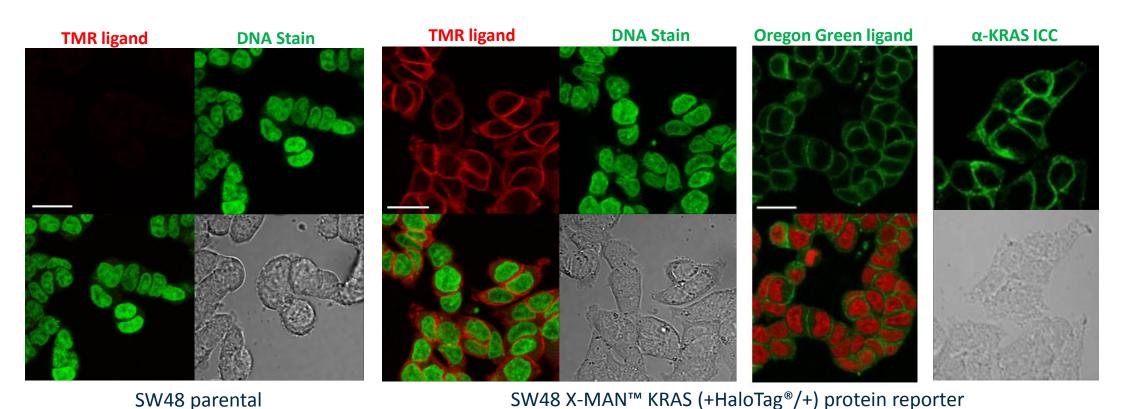


Flexible and efficient system Wider experimental range ... Reliable results

X-MAN™ HaloTag® Reporter Kit

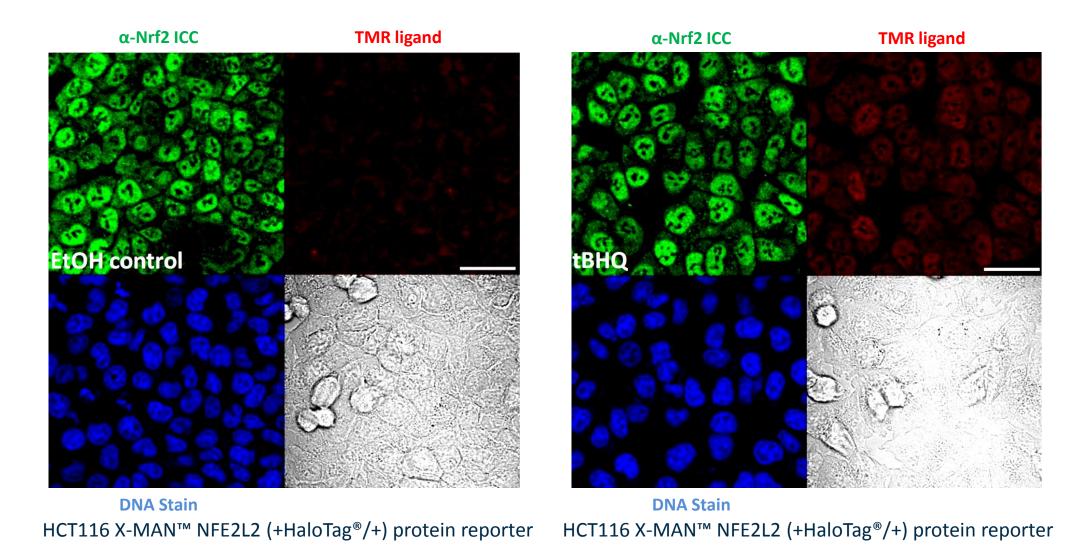

X-MAN™ HaloTag® Protein Reporter Kit

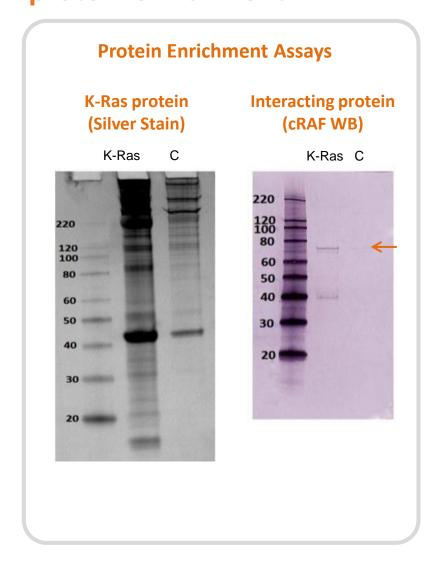
- ➤ Engineered to generate N- or C-terminal fusion of HaloTag® to the endogenous protein of interest
- ➤ Ideal for studying a wide variety of properties of the protein of interest due to the broad range of HaloTag® ligands available


X-MAN™ HaloTag[®] Protein Reporter Control

- ➤ Can be used to demonstrate that the property is specific to the protein of interest, and not conferred by inherent properties of the HaloTag® protein
- > Controls for protein reporter lines

HaloTag®: Live cell imaging of protein localisation (K-Ras)


- > Some targets/diseases you may want to screen directly for translocation events in live cells
- Easily assayed using HaloTag® and cell-permeable fluorescent HT-ligands, available in different colours
- ➤ Use of HaloTag® ligand shows selective staining for HaloTag® engineered lines over unmodified parental cells demonstrating specificity of signal
- ➤ HaloTag® ligand shows comparable results to ICC


Scale bars = $20 \mu m$

HaloTag®: Can provide superior alternative to ICC

➤ Well-characterised increase in stability and nuclear translocation of NFE2L2 (NRF2) in response to tert-butylhydroquinone (tBHQ) revealed using HaloTag® reporter cell line but not ICC

HaloTag®: Pull-down experiments with isogenic reporter lines demonstrate protein enrichment

Potential Interactors of KRAS
Identified by LC/MS/MS from Halo-KRAS SW48 Horizon Cell line

Signaling Proteins And Exchange Factors		Cytochrome C Subunit II and III		NADH <u>Dehydrogenase</u>	
Rap1B	32	COX4I1	94	NDUFS1	77
RhoA	25	UQCRC1	86	NDUFA9	41
RAC1	22	UQCRC2	83	NDUFS2	38
RAB8B	20	COX6C	46	NDUFA13	34
RhoAAct.	18	UQCRFS1	41	NDUFV1	33
FARP1	16	MT-CO2	37	NDUFB10	28
RAB13	14	COX2	29	NDUFA7	26
GNA11	13	CYC1	26	NDUFA6	26
RhoG	12	UQCRB	25	NDUFA12	24
GNA13	10	COX5A	25	NDUFS8	21
ATP6V1G1	9	COX5B	23	NDUFS3	19
RheB	9	UQCRQ	13	NDUFB5	17
ATP6V1E1	9	UQCRH	9	NDUFA5	17
HRAS	8	COX6B1	6	NDUFB9	16
YWHAZ	8	COX7A2	4	NDUFS7	15
ErbB2	8	COX7C	3	NDUFV2	14
RAB7L1	6	UQCR10	3	NDUFB6	12
ARHGEF12	5	COX7A2L	3	NDUFS5	11
		CYB5B	2	NDUFA2	10
		COX11	2	NDUFB4	10
				NDUFAF3	10
				NDUFA8	9
				NDUFS6	8
				NDUFC2	8
				NDUFB7	7
				NDUFAF4	6
				NDUFA10	6
				NDUFA3	5
				NDUFS4	5
downs				NDUFA4	4
				NDUFB3	3
				NDUFA11	2
					_

- HaloTag® ligand linked to resin enables stringent pull-downs
- High sensitivity via covalent interaction with matrix

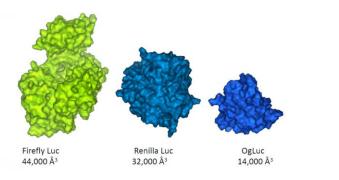
X-MAN™ HaloTag® Kits Currently Available

NCBI Gene Name	Common name	X-MAN™ (+HaloTag®/+) protein reporter	X-MAN™ (+HaloTag®/+) protein reporter of mutated variants	X-MAN™ HaloTag [®] protein reporter control
HIF1A	HIF1α	×		x
NFE2L2	NRF2	×		х
KRAS	K-Ras	x	G12C	X
			G12D	
			G12V	
			G13D	

- Additional lines are constantly being developed by Horizon or can be developed as a custom project
- ➤ X-MAN™ HaloTag® kits come with:
 - A vial of the cell line of interest
 - Its parental cell line which can act as a control, and
 - All reagents and buffer necessary to perform a set of experiments.

These products are governed by HaloTag® and Horizon Discovery Limited Use Label Licenses

Agenda


➤ Introduction to Horizon's Technology

➤ X-MAN™ HaloTag® Reporter Kits

➤ X-MAN™ NanoLuc™ Reporter Kits

X-MAN™ NanoLuc™ Reporter Lines: Technology Background

- NanoLuc™ derived from a new luciferase from Deep Ocean Shrimp (Oplophorus)
- > Serially mutated to create a monomeric & 150-fold brighter luciferase vs FF and Renilla
- > Secreted or intracellular; ATP independent light emission with novel substrates
- > Able to detect gene/protein levels at very low endogenous expression levels
- > Endogenous high-throughput screening now possible

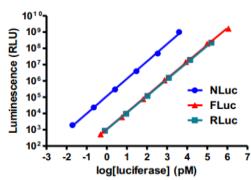
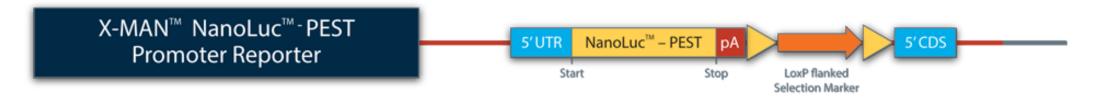


Image of live cells expressing NLuc

Captured with a handheld iPhone


150 fold increased specific activity compared with firefly or Renilla luciferase

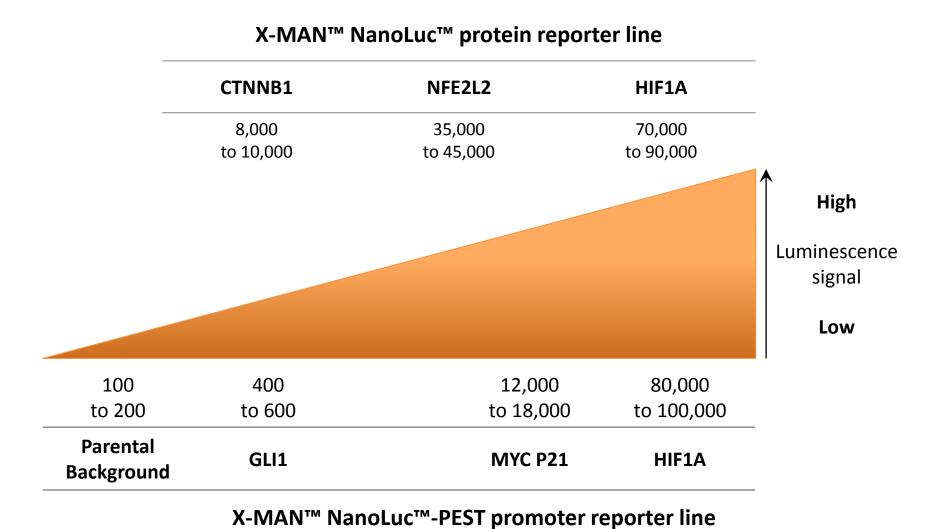
Better biology ... Endogenous HTS ... Biologically relevant results

X-MAN™ NanoLuc™ Kit Formats

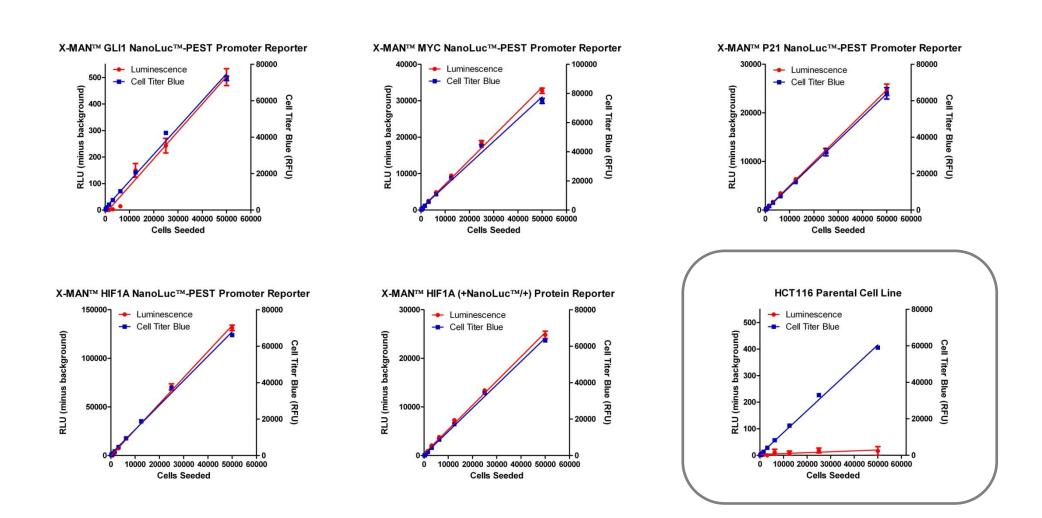
X-MAN™ NanoLuc™-PEST promoter kit

- Promoter fusions with PEST-NanoLuc™ for rapid turnover and thus dynamic signal kinetics
- > Short intracellular lifetime

X-MAN™ NanoLuc™ protein kit

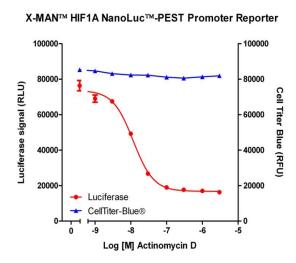

- ➤ Engineered to generate N- or C-terminal fusion of NanoLuc[™] to the endogenous protein of interest
- > Ideal for use in protein expression reporter assays

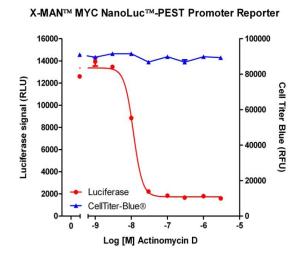
X-MAN™ NanoLuc™ protein reporter control cell lines are also available

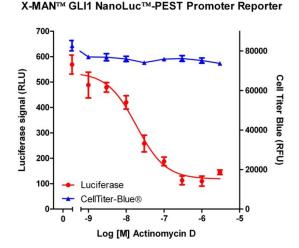

NanoLuc™: Signal Range

➤ Baseline luminescence signal is specific for each NanoLuc [™] reporter line, dependent on gene or protein expression levels

NanoLuc™: Signal Linearity


- Good signal linearity with increasing cell number
- > Minimal background luciferase signal in parental cells, even at high cell densities



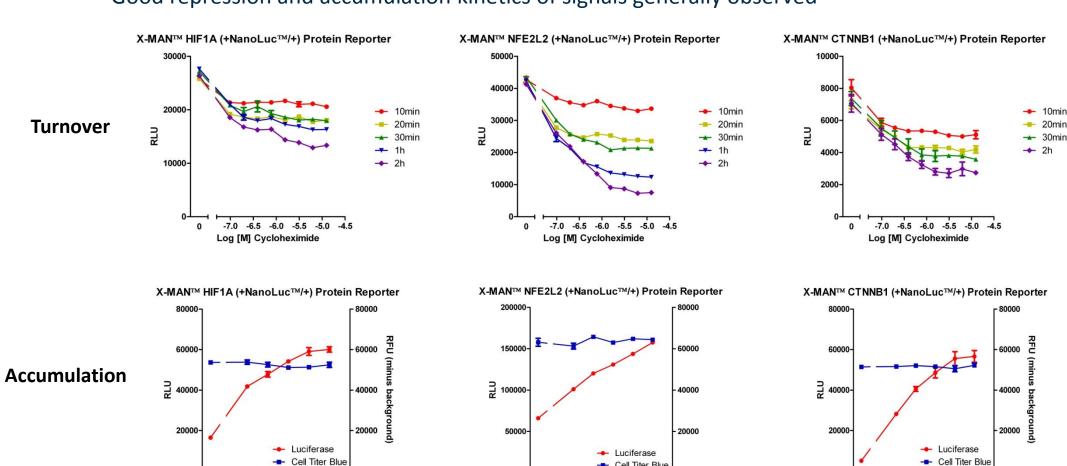

NanoLuc™: Excellent signal dynamics

> Dynamics of promoter reporter lines:

- 6h treatment with a Actinomycin D
- Rapid and robust decreases in luciferase signal
- Good induction kinetics on inducible genes
- CellTiter-Blue® to control for effects on cell viability

NanoLuc™: Excellent signal dynamics

> Dynamics of protein reporter lines:


- Turnover: Treatment with Cyclohexamide (t_{1/2} dictated by target genes in this scenario)
- Accumulation: 4h treatment with bortezomib

-7.5

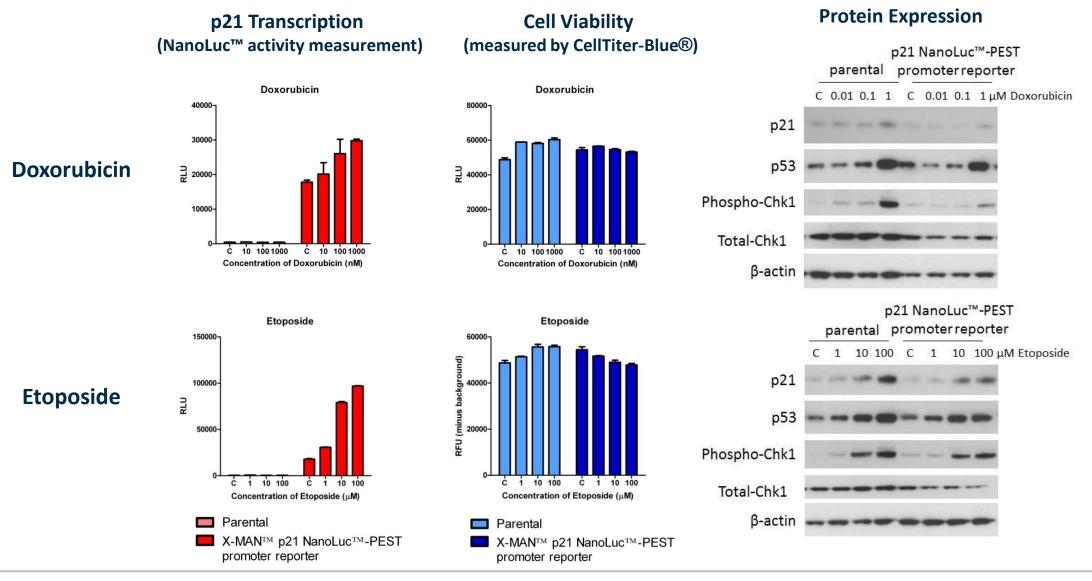
Log [M] Bortezomib

-7.0

Good repression and accumulation kinetics of signals generally observed

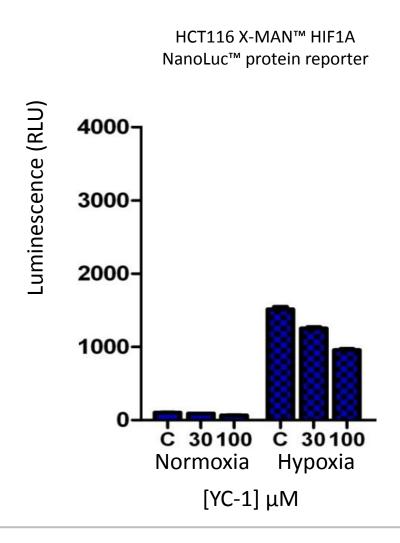
-7.5

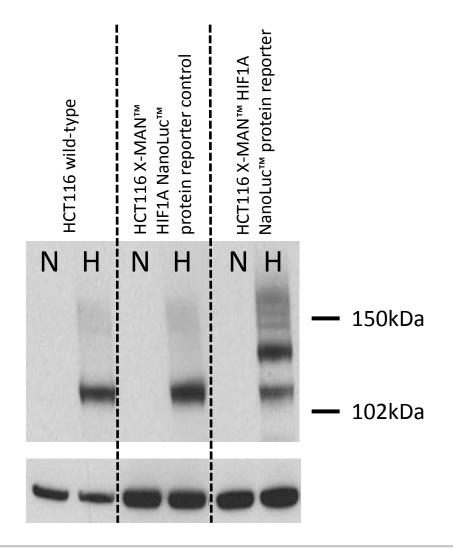
Log [M] Bortezomib


-8.0

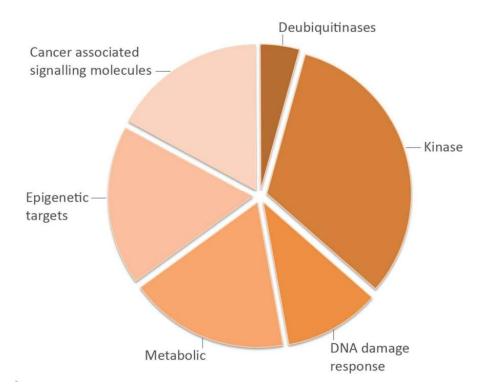
Log [M] Bortezomib

-7.5


NanoLuc™ Functional Validation: p21 promoter reporter

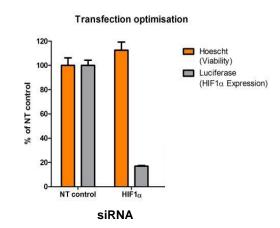

- ➤ Monitor modulation of p21 transcription by DNA damaging agents
 - 6h drug treatment, cell viability measured by multiplexing luciferase assay with CellTiter-Blue®

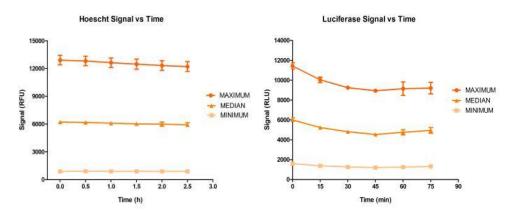
NanoLuc™ Functional Validation: HIF1A protein reporter

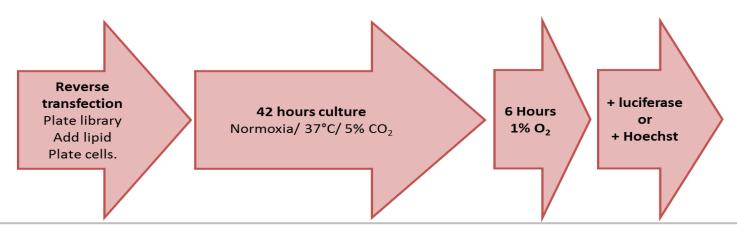

- Monitor induction of HIF1A protein by hypoxia
 - Natural induction mechanisms preserved 1% O2 increases the HIF1A fusion protein
 - Treatment with YC-1 HIF1A inhibitor decreases expression of HIF1A under hypoxia as determined by NanoLuc™ protein reporter

NanoLuc™ Screening Application: HIF1A protein reporter

- ➤ Used in 2 different screening formats
 - siRNA screen at Horizon using our library of over 2000 druggable siRNAs
 - Compound screen at NCATS, using the NCGC Pharmaceutical Collection of approved and investigational drugs

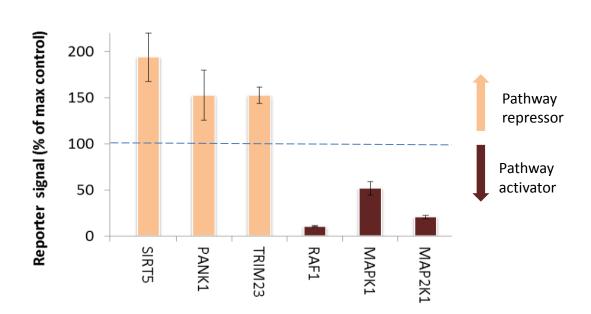

	siRNA Screen	Compound Screen
Plate format	384	1536
Number of Reagents	2235	2514
Z'	0.5	0.7
%CV	6.5%	6.1%

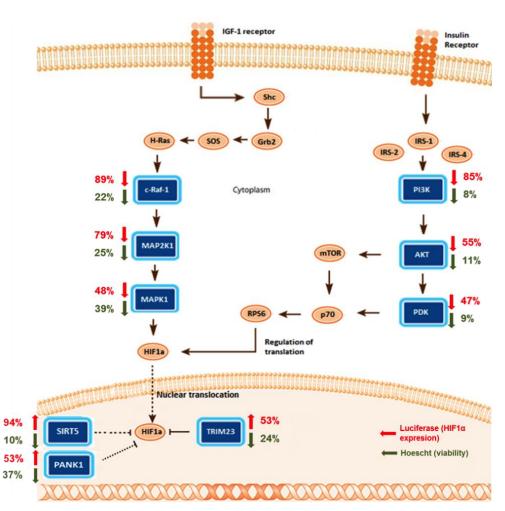



NanoLuc™ Screening Application: HIF1A siRNA Screen

➤ Transfection conditions were optimised to provide conditions that achieve optimal siRNA knockdown with minimal effects on viability.

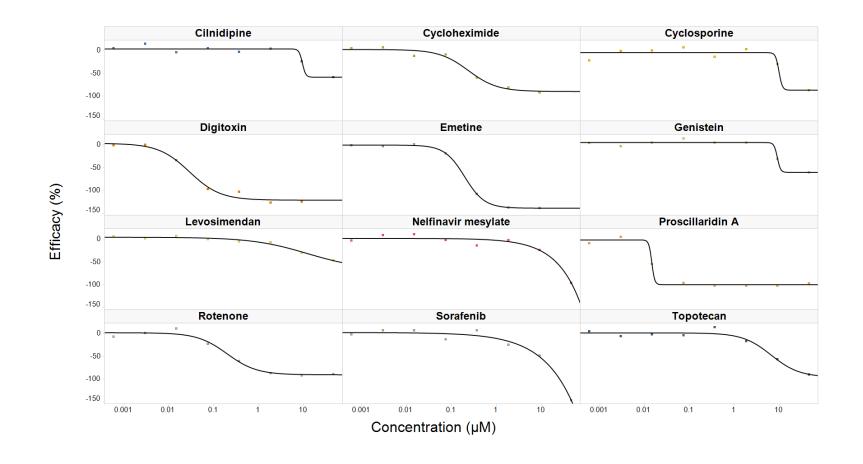
- > We concurrently measured:
 - Hoescht nuclear marker to assess viability
 - NanoLuc[™] luciferase signal to assess
 HIF1α protein levels





NanoLuc™ Screening Application: HIF1A siRNA Screen

- > Subset of kinase, DUB & epigenome hits shown
- Known and novel transcription targets found
- ➤ Modulators both activating and repressing HIF1A


NanoLuc™ Screening Application: NCATS HIF1A Compound Screen

- ➤ Cells were seeded into 1536-well plates and induction of HIF1A performed using 1% oxygen or the hypoxic-mimetic CoCl₂
 - Knockdown of HIF1A protein reporter signal was confirmed using Topotecan after a 16h drug exposure
 - 1500 cells/well selected for screen, giving a good assay window

NanoLuc™ Screening Application: NCATS HIF1A Compound Screen

- A high-throughput screen was run in 1536-well plate format using the NCGC Pharmaceutical Collection of approved and investigational drugs.
 - 1500 cells per well, 18-hour compound incubation time, 1% O₂
 - 7 concentrations (0.6 nM-46 μM or 1.1 nM-92 μM), duplicate runs
 - The assay performed well returning strong hits for known regulators
 - QC parameters were good with Z' of 0.70 and CV of 6.1%.

X-MAN™ NanoLuc™ Kits Currently Available

NCBI Gene Name	Common name	X-MAN™ NanoLuc™- PEST promoter reporter	X-MAN™ (+NanoLuc™/+) protein reporter	X-MAN™ NanoLuc™ protein reporter control
HIF1A	HIF1α	x	x	x
NFE2L2	NRF2		x	x
CTNNB1	β-CATENIN		x	x
CDKN1A	p21, CIP1, P21 ^{CIP1}	x		
MYC	c-MYC	x		
GLI1	GLI	x		

- ➤ Additional lines are constantly being developed by Horizon or can be developed as a custom project
- **>** X-MAN™ NanoLuc™ kits are supplied with:
 - A vial of the cell line of interest
 - All reagents and buffer necessary to perform a set of experiments
- Fits are available in 10, 100, 500, 1,000 ml and custom reporter volume sizes
- > These products are governed by NanoLucTM and Horizon Discovery Limited Use Label Licenses

Selection of Customers / Collaborators (>650 unique partners)

INDUSTRY

Creative Science for Advanced Medicine

ACADEMIA

IOHNS HOPKINS

UNIVERSITY

Your Horizon Contact:

Holly Astley

Team Leader – Cell Line Production

h.astley@horizondiscovery.com

+44 (0) 1223 655 580 (Front desk)

Horizon Discovery Ltd, Building 7100, Cambridge Research Park, Waterbeach, Cambridge, CB25 9TL, United Kingdom

Tel: +44 (0) 1223 655 580 (Reception / Front desk) Fax: +44 (0) 1223 862 240 Email: info@horizondiscovery.com Web: www.horizondiscovery.com